
Guide to Replication Files for Cunha, Heckman,
and Schennach (2010)

1 Introduction

These notes are a guide to the replication files in Cunha, Heckman, and Schennach (2010). The

following table lists the folders that are part of the replication material:

Table

Folder Name Description of Material in the Folder

Code The code used in the estimation

Data The dataset in stata format

Simulation Codes used in the simulation to replicate Figures

Table I&II Material to replicate Tables I & II

Table III Material to replicate Table III

Table IV Material to replicate Table IV

Table V Material to replicate Table V

We start the note with a review of state space models. This will allow readers interested in replicat-

ing the results or learning how to use the code by setting the notation that is used in the software.

After reading these notes and working through the examples, readers should have a familiarity with

entering information to use the code for their own purposes, replicate the tables in the paper, and

run the simulations that generate the figures.

2 Review of State Space Models

2.1 Gaussian Linear State Space Models

Let t = 1, ..., T. Let yt ∈ M (pt × 1) denote the observed measurements. Let αt ∈ M (m× 1)
denote the state vector (unobserved). Let εt ∈ M (pt × 1) denote the measurement noise, and ηt

∈ M (m× 1) the transition disturbances. The multivariate Gaussian linear state space model is

1

given by:

yt = Xβt + Ztαt + εt where εt ∼ N (0,Ht) (1)

αt+1 = Gtαt + ηt where ηt ∼ N (0, Qt) (2)

α1 ∼ N (a1, P1) . (3)

Equation (1) is called the measurement equation. It relates the measured observable variables

that provide information on αt. We use Zt ∈ M (pt ×m) to denote the matrix of factor loadings.

The Ht ∈M (pt × pt) matrix is the variance-covariance matrix of the measurement noise vector, εt.

Equation (2) is called the transition equation. We use Gt ∈ M (m×m) to denote the matrix of

factor coefficients. The transition equation models how the state vector αt evolves over time. In

Cunha and Heckman (2007), the technology of skill formation is modeled as a transition equation. It

tells us how current child’s skills and parental investments today increase the child’s skills tomorrow.

Finally, (3) is the initial condition of the system.

The matrices Zt,Ht, Gt, Qt are called system matrices. The state space model is said to be time

invariant when Zt = Z, Ht = H, Gt = G, and Qt = Q for t = 1, ..., T. In many practical situations

the state space model can be set up as time invariant.

2.2 The Kalman Filter

Let p (y) = p (y1, ..., yT) denote the likelihood of the model (1),(2), and (3). It is possible to estimate

the matrices Zt,Ht, Gt, Qt by maximizing this likelihood. However, it is easier to work with the

conditional likelihood:

p (y) = p (y1)
TY
t=2

p (yt| yt−1, ..., y1) . (4)

One can obtain the conditional likelihood by using the Kalman Filter. The idea is that, because

of the linearity and normality of the model we are using, the likelihood p (y) is the likelihood of a

normal random vector. Consequently, each term p (yt| yt−1, ..., y1) is also the likelihood of a normal
random variable. So, to obtain this function we only need to characterize its mean and variance.

The Kalman filter generates a set of recursions that given the mean and variance of yt|yt−1, ..., y1
we obtain the mean and variance of yt+1|yt,..., y1.
Define

at+1=E [αt+1|Yt]
Pt+1=V ar [αt+1|Yt]

Note that

E [yt+1|X,Yt] =Xβt + Ztat

V ar [yt+1|X,Yt] =ZtPt+1Z
0
t +Ht.

2

The Kalman filter for the state space model (1)-(3) can be written in the form (Harvey, 1989):

vt = yt − Ztat

Ft = ZtPtZ
0
t +Ht

Kt = PtZ
0
t

at+1 = Gt

¡
at +KtF

−1
t vt

¢
Pt+1 = Gt

¡
Pt −KtF

−1
t K 0

t

¢
G0
t +Qt

(5)

2.3 Mixture of Gaussian Nonlinear State Space Models

More generally, consider the model:

yt = g (X,αt) + εt where εt ∼ N (0, Ht) (6)

αt+1 = f (αt) + ηt where ηt ∼ N (0, Qt) (7)

α1 ∼ N (a1, P1) . (8)

The conceptual solution of the nonlinear filtering is simple. We break the problem into a

prediction and update step and then proceed recursively. The prediction step generates p (αt| yt−1)
given knowledge of p (αt−1| yt−1) . This is accomplished by applying the Chapman-Kolmogorov
equation:

p
¡
αt| yt−1

¢
=

Z
p (αt|αt−1) p

¡
αt−1| yt−1

¢
dαt−1.

where p (αt|αt−1) is the density of αt conditional on αt−1. The update step computes p (αt| yt) given
p (αt| yt−1) via the Bayes’ rule:

p
¡
αt| yt

¢
=

p (yt|αt) p (αt| yt−1)
p (yt| yt−1)

.

A simple solution to the filtering problem exists when the functions g and f are linear and

separable in each of their arguments, the unobserved state αt is Gaussian, and the noise terms εt, ηt
are Gaussian, independent random variables. In this case, one can use the Kalman Filter to derive

the equations used in the prediction and update steps analytically. However, simple departures of

this framework (e.g. f is nonlinear) makes the Kalman Filter unsuitable. It is possible to adapt this

approach by considering the first-order Taylor series approximation of the function f and then apply

the standard Kalman Filter prediction and update rules. This is known in the filtering literature

as the Extended Kalman Filter (EKF). The problem with this approach is that the EKF generally

generates biased expressions for means and variances.

More recently, researchers have used general Particle Filtering techniques.1 However, in the

context of panel data with a large cross-section dimension, the Particle Filter can be computationally

1See, for example, [?]; [?]

3

costly. Furthermore, the Particle Filter may not be a good tool if the goal of the researcher is to

estimate the (parameters of the) functions f or g especially when these functions are time invariant.

Another approach is to consider the Unscented Kalman Filter (UKF). The crucial assumption in

this algorithm is that both p (αt| yt) and p (αt+1| yt) can be accurately approximated by the density
of a normal random variable with mean:

at+k,t = E
¡
αt+k| yt

¢
and variance

Pt+k,t = V ar
¡
αt+k| yt

¢
for k ∈ {0, 1}. Because of this assumption, the only objects that have to undergo the prediction
and update steps are the means and variances of the approximating normal distribution, just as in

the standard Kalman Filter algorithm.

Obviously, in some situations the normal approximation may not be a good one. It is possi-

ble that nonlinear functions of normally distributed random variables generate random variables

that have densities are not symmetric around their means or with many modes, which would be

inconsistent with a normal approximation. We introduce a more flexible approach which considers

approximations that use mixture of normals:

p
¡
αt+k| yt

¢
'

LX
l=1

τ l,tφ (αt; al,t+k,t, Pl,t+k,t)

where φ (αt; al,t+k,t, Pl,t+k,t) is the probability density function of a normal random variable with

mean al,t+k,t and variance Pl,t+k,t, for k ∈ {0, 1}. The weights τ l,t are such that τ l,t ∈ [0, 1] andPL
l τ l,t = 1. Under this formulation, within each stage, we break the filtering problem into parallel

problems and obtain the final result at the end.

2.4 The Update Step

If the measurement equations are linear, then the update step is just like in the Kalman Filter.

First, we compute the update density for each element of the mixture. Namely, let ŷl,t denote

the predicted measurement by the lth element of the mixture:

ŷl,t = El

¡
yt|X,Y t−1¢ = El

£
g (X,αt)|X,Y t−1¤+El

£
εt|Y t−1¤ = El

£
g (X,αt)|X,Y t−1¤ (9)

Below, we show how to compute the moment above. For now, consider the following updating

equations:

al,t,t = al,t,t−1 +Kl,t (yt − ŷl,t) (10a)

Pl,t,t = Pl,t,t−1 −Kl,tFl,tK
0
l,t (10b)

4

where:

Kl,t = Cov
£
αt, yt|X, yt−1

¤
F−1l,t (10c)

and

Fl,t = V ar
£
g (X,αt)|X,Y t−1¤+Ht. (10d)

We can then approximate the posterior density p (αt|Y t) with a linear combination of densities

φ (αt; al,t,t, Pl,t,t) with weights given by:

τ r,t =
τ r,t−1φ (yt; ŷr,t, Fr,t)PL
l=1 τ l,t−1φ (yt; ŷl,t, Fl,t)

, r ∈ {1, . . . , L} . (10e)

2.5 The Prediction Step

With knowledge of a good approximation for the density p (αt|Y t) expressed as the mixture of

normals and knowledge of the transition equation (??) one can approximately compute the one-
step-ahead prediction density p (αt+1|Y t) also expressed as a mixture of normals. More precisely,

let:

al,t+1,t = El

¡
αt+1|Y t

¢
= El

¡
f (αt) + ηt+1

¯̄
Y t
¢
= El

¡
f (αt)|Y t

¢
(11)

Pl,t+1,t = V arl
£
αt+1|Y t

¤
= V ar

¡
f (αt) + ηt+1

¯̄
Y t
¢
= V ar

¡
f (αt)|Y t

¢
+Qt+1 (12)

Then, an approximation to p (αt+1|Y t) is given by:

p
¡
αt+1|Y t

¢
≈

LX
l=1

τ l,tφ (yt; al,t+1,t, Pl,t+1,t) .

2.6 Unscented Transform

A difficulty arises in the implementation of the filtering because in the prediction and update

stages one has to compute integrals that involve nonlinear transformations of random variables

whose distributions are approximated by mixtures of normals. The Unscented Transform (UT)

is a convenient tool to compute the mean and variance of a random variable that undergoes a

nonlinear transformation. For example, consider computing the expressions (11) and (12). Then,

by definition:

al,t+1,t =

Z
f (αt)φ (αt; al,t,t, Pl,t,t) dαt (13)

Pl,t+1,t =

Z
(f (αt)− al,t+1,t) (f (αt)− al,t+1,t)

0 φ (αt; al,t,t, Pl,t,t) dαt−1 +Qt+1 (14)

The expressions (13) and (14) involve the computation of m integrals. One way to proceed is to

consider the product of quadrature rules. The difficulty with this approach is that as m becomes

larger, the number of evaluations increases exponentially.

Another approach is to consider monomial rules. The Unscented Transform is a monomial rule

5

that approximates the expressions (13) and (14). To do so, one picks deterministically 2m+1 points

ᾱN,l,t,t and corresponding weights wN,l,t, n = 0, 1, ..., 2m. Let Pl,t,t (n, :) denote the nth row of the

(m×m) matrix Pl,t,t. Let κ ∈ R such that κ+m 6= 0. The UT proposes the following points xN,l,t,t:

ᾱN,l,t,t= al,t,t for n = 0.

ᾱN,l,t,t= al,t,t +
p
(Nα + κ)Pl,t,t (n, :) for n = 1, ...,m.

ᾱN,l,t,t= al,t,t −
p
(Nα + κ)Pl,t,t (n, :) for n = Nα + 1, ..., 2m.

(15)

and the following weights wN,l,t:

wl,N,t =
κ

m+κ
for n = 0.

wl,N,t =
1

2(m+κ)
for n = 1, ...,m.

wl,N,t =
1

2(m+κ)
for n = Nα + 1, ..., 2m.

We approximate El [f (αt)|Y t] and V arl [f (αt)|Y t] by computing:

al,t+1,t = El

£
f (αt)|Y t

¤
≈

2mX
n=0

wl,N,tf (ᾱN,l,t,t)

and

Pl,t,t = V ar
£
f (αt)|Y t

¤
+Qt ≈

2NαX
n=0

wN,l,t [f (ᾱN,l,t,t)− al,t+1,t] [f (ᾱN,l,t,t)− al,t+1,t]
0 +Qt

2.7 Implementation of Nonlinear Filtering

Let p (y) denote the likelihood (4):

p (y) = p (y1)
TY
t=2

p
¡
yt| yt−1

¢
. (16)

The idea is to use the nonlinear filtering to obtain a recursive algorithm which we can use to

calculate p (yt+1| yt). To see how, note that we assume that

p (α1) ≈
LX
l=1

τ l,0φ (α1; al,1,0, Pl,1,0)

It follows that:

p (y1) ≈
LX
l=1

τ l,0φ (y1; ŷ1, Fl,1)

where ŷ1 and Fl,1 are defined in (9) and (10d). Now, by applying (10a), (10b), (10c), and (10e)

allow us to obtain al,1,1, Pl,1,1, and τ l,1 which is really helpful because now we can characterize the

6

posterior density as:

p (α1|Y1) ≈
LX
l=1

τ l,1φ (α1; al,1,1, Pl,1,1) .

We then apply the prediction steps to obtain al,2,1 and Σl,2,1. With knowledge of these quantities,

we can approximate the predicted density as:

p (α2|Y1) ≈
LX
l=1

τ l,1φ (α2; al,2,1, Pl,2,1) .

And now we complete the cycle, because by using (9)-(10d) we can compute ŷ2 and Fl,2, with which

we can compute:

p (y2| y1) ≈
LX
l=1

τ l,1φ (y2; ŷ2, Fl,2) .

Furthermore, we use (10e) to update the weights τ l,2. By proceeding in a recursive manner, we can

construct the right-hand side of (16), which is just equal to the likelihood.

3 Code Instructions

The code is written in Fortran/90. It contains the following routines:

Name Function

globvar.f90 Here you define the basics of the model: Number of periods, individuals, etc...

initialize.f90 Here you describe the organization of the data set you want to estimate.

mappings.f90 Here you inform the likelihood the parameters to be estimated.

stdeviation.f90 This routine computes standard errors.

utilities.f90 This module has the UT Algorithm and specification of the functions f and g

write_results.f90 Routine that prints out estimates and standard errors.

likelihood.f90 It contains the routine that will call the likelihood.

like_aux.f90 Here you find the recursions of the Kalman Filter.

matrix.f90 Auxiliary routine: Matrix Inversion, etc...

minimization.f90 Routine that minimizes the negative of the likelihood.

probability.f90 Routine that is used to evaluate the density function of the normal random variable.

statistics.f90 Routine that computes means, standard errors, etc...

main.f90 "The Code"

3.1 The Module globvar.f90

The globvar.f90 routine has the information you need to enter. You will say the number of indi-

viduals (nind), the number of time periods (ntime), the number of factors (nfac), the number of

7

measurement equations (nmea), the dimension of Xt (nx)2, and the number of stages that you want

to estimate (nstage). The matrices G and Q can vary over time, t. If you prefer some periods to

have the same matrix G, then you can set those to be the same stages. The remaining objects in

this routine should not be changed.

3.2 The Module initialize.f90

3.2.1 Reading the data set for the estimation

This routine is used to inform the code how your data is organized. However, it is important that

you supply the data to the code in the following "long" format:

person idperiod y1,t x3,t y2,t ... yn,t dy1,t dy2,t ... dyn,t

1 1 12 1 1 5 1 1 1

1 2 −100 1 1 7 0 1 1

1 3 11 2 −100 15 1 0 1

1 4 14 3 3 12 1 1 1

2 1 −100 4 2 9 0 1 1

2 2 12 3 2 12 1 1 1

2 3 13 3 −100 22 1 0 1

2 4 −100 5 0 8 0 1 1

You supply that total number of variables in your data set (including the variable person id and

period) in nvar. This is the total number of columns in your data set. The name of the data set is

supplied in "character(len=100) :: datafile=filename.raw".

Next, you supply the number of measurement equation per period. This is done so because

some measurements may be available at some periods, but not at others. In the example that

comes ready with the code, there are six equations at each period. Then, you inform the stage

number at each period. Here we have only one stage, which is the same for all periods.

The information for the code to find the location of each measurement variable, that is, the

vector yt in (1) should be entered in the vector ly, which has dimension nmea. The vector ldy has

the location of the dy variables, which inform the code whether the value for yt for a given person

is missing (in which case dy = 0) or not (dy = 1).

The integer-valued matrix eqindex (t, nequation(t)) informs the code the measurement equations

you want to estimate in period t. This information may change with time periods, so you should

adjust it accordingly.

The integer-valued matrix mx (t, nequation(t)) informs the code the number of explanatory

variables that you want to include in period t and equation nequation(t).The tensor lx(t, j,mx (t, j))

2The number of observable variables in each equation at each time period can change. Here you have to inform
the maximum number of observable equations you will have. For example, if you have two measurement equations,
the first has 4 observable variables and the second has 5 observable variables, you should set nx = 5.

8

informs the location of each explanatory variable you want to include in period t, equation j, variable

mx (t, j) .

3.2.2 Imposing the normalizations in the parameter vector

The second part of the routine is devoted to initializing the parameters and imposing the normal-

izations you may wish. It is here that you will specify which factor loadings (elements of the matrix

Zt) that will be normalized.

Tip: When you are running a large model, it is usually a good idea to constrain the

factor loadings you want to estimate, Zt, the elements of the transition matrix, Gt, and

the initial variance matrix, P0 to some value and let the code find good initial values for

the vector βt. If you start with bad initial values, this may make the code "crash". The

reason is that the last iteration of the Kalman Filter:

Pt+1 = Gt

¡
Pt −KtF

−1
t K 0

t

¢
G0
t +Qt

The object on the left-hand side is the variance matrix (or, if it is scalar, a variance,

which is a positive scalar). On the RHS, you have a subtraction. There is no guarantee

that the resulting number will be positive. This is very likely to occur when you have

bad initial values. This should not happen when you have good values for βt.

3.3 The Modules mappings.f90 and stdeviation.f90

There are two routines in this module. The first one, whose name is dimtheta, simply counts the

number of parameters to be estimated. It then informs the code the number dimtheta which is the

dimension of the parameter vector theta to be estimated.

The second routine, called getpar, is the routine that transforms the vector theta in the para-

meters as written in (1),(2), and (3), that is, the elements of the system matrices βt, Zt,Ht, Gt, Qt.

The stdeviation.f90 module is very parallel to the mappings.f90. The difference is that map-

pings.f90 is used for the point estimates, while the stdeviation.f90 is used, obviously, for the com-

putation of standard errors. There are two routines here. The first is called bootstrap and it stores

the bootstrap simulation results. The second is called standard_error and computes the standard

error of the point estimates.

4 Examples

4.1 Example 1

To show how to use the code, consider the following example. Suppose that there are two factors,

so m = 2. Assume that there are two independent variables x1 and x2. At each period t there are

9

three measures exclusively on factor α1t :

yk,t = βk,1x1 + βk,2x2 + Zk,t,1 lnα1,t + εk,t for k = 1, 2, 3 (17)

At each period t there are three measures exclusively on factor α2t :

yk,t = βk,1x1 + βk,2x2 + Zk,t,2 lnα2,t + εk,t for k = 4, 5, 6. (18)

As in Cunha, Heckman, and Schennach (2008) we assume that factor one needs an anchor. Let Q1

denote such anchor:

Q1 = δ1x1 + δ2x2 + λ1α1,T + ν1

Factor one involves according to a nonlinear function:

lnα1,t+1 =
1

φλ1
ln
©
γ1,1e

φλ1 lnα1,t + γ1,2e
φ lnα2,t

ª
+ η1,t+1,

subject to γ1,1, γ1,2 ≥ 0 and γ1,1 + γ1,2 = 1.

Factor two involves according to a linear function:

lnα2,t+1 = γ2,2 lnα2,t + η2,t+1.

This model is implemented in three folders. We generate fake data using the STATA file

data.do. The reader can read that file to see the true parameters used for the model above. Folder

"LinearAnchor-V0" applies the algorithm above as stated with one exception: The anchoring para-

meter, λ1, is set at is true value. As the reader can see, the algorithm recovers the true parameters

relatively well. Folder "LinearAnchor-V1" estimates λ1. The fact that λ1 is estimated has a small

effect on the estimated parameters of the technology, both point estimates as well as standard

errors. Folder "LinearAnchor-V2" implements the algorithm above without computing the square

root of the variance-covariance matrix, which is computationally intensive. As the reader can see,

there is little effect on the estimates of the technology as well as standard errors.

4.2 Example 2

To show how to use the code, consider the following example. Suppose that there are three factors,

som = 3, which follow exactly the equations (17) and (18) in Example 1. Factor 3 is a static one (as

parental skills in Cunha, Heckman, and Schennach, 2008). We assume that there are measurements

for factor 3, α3, only in period one:

yk,1 = βk,1x1 + βk,2x2 + Zk,1 lnα3 + εk,1 for k = 1, 2, 3

10

As in Cunha, Heckman, and Schennach (2008) we assume that factor one needs an anchor. Let Q1

denote such anchor:

Q1 = δ1x1 + δ2x2 + λ1α1,T + ν1

Factor one evolves according to a nonlinear function:

lnα1,t+1 =
1

φλ1
ln
©
γ1,1e

φλ1 lnα1,t + γ1,2e
φ lnα2,t + γ1,3e

φ lnα3
ª
+ η1,t+1,

subject to γ1,k ≥ 0 for k = 1, 2, 3 and
P3

k=1 γ1,k = 1.

Factor two evolves according to a linear function:

lnα2,t+1 = γ2,2 lnα2,t + η2,t+1.

Since Factor 3 is static, it evolves according to:

α3,t+1 = α3,t

11

